
Software Architecture for Large-Scale, Distributed, Data-Intensive Systems

Chris A. Mattmann*, †, Daniel J. Crichton*, J. Steven Hughes*, Sean C. Kelly* and Paul M.
Ramirez*, †

*Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

{mattmann,dcrichton,jshughes,sean.kelly,pramirez}@jpl.nasa.gov

†Computer Science Department
University of Southern California

Los Angeles, CA 90089, USA
{mattmann,pmramire}@usc.edu

Abstract

The sheer amount of data produced by modern

science research has created a need for the construction
and understanding of “data-intensive systems”, large-
scale, distributed systems which integrate information.
The formal nature of constructing such software
systems; however, is relatively unstudied, and has been
a large focus of the super-computing and distributed
computing communities, rather than the software
engineering communities. These data-intensive systems
exhibit characteristics which appear fruitful for
research from a software engineering, and software
architectural focus. From our experience, the
methodologies and notations for design and
implementation of data-intensive systems look to be a
good starting point for this important research area.
This paper presents our experience with OODT, a
software architectural style, and middleware-based
implementation for data-intensive systems developed
and maintained at the Jet Propulsion Laboratory. To
date, OODT has been successfully evaluated in several
different science domains including Planetary Science
with NASA’s Planetary Data System (PDS) and Cancer
Research with the National Cancer Institute (NCI).

1. Introduction

Science data management has seen an enormous
increase in recent years, both in terms of the quantity of
data generated, and in the complexity of the data itself.
With the advent of new technologies and paradigms
such as Grid-based systems [1,20], distributed-object
middlewares [2,21] and wrapper-based information
extraction tools [3], there has been a change in practice
from developing one-off data management solutions

which manage data independently (with little attention
paid to future interoperability with other systems), to
developing architectures and middlewares which are
able to integrate and re-use existing data resources, such
as web sites and legacy databases. This potential for re-
use allows one to both imagine and realize the
construction of large-scale distributed data management
systems, whose main purpose is to query, locate, access,
process and distribute data for potential users.

The data-intensive nature of these systems; however,
shifts the focus from traditional software engineering
methodologies and practices to believing that hardware,
processing power, parallelism, and technology alone
will be enough to construct software which can:

1. Access data in legacy data resources
2. Discover data which may be unknown at

system run-time
3. Correlate the different data models which

describe each data resource
4. Integrate the software interfaces to the

legacy data resources.

Existing work in data-intensive systems severely

lacks any common software engineering design
constructs and relations between architectural
components and implementation-level decisions. Our
work has focused on this very area, the design and
construction of large-scale data-intensive systems. We
have developed an architectural style for data-intensive
systems which allows software developers to construct
architectural designs which address issues 1 through 4
above. In addition, a middleware implementation
framework of the architectural style has been
constructed and deployed. We have coined our
architecture, and subsequent middleware

implementation, OODT (Object Oriented Data
Technology).

Section 2 describes the OODT architectural style.
Section 3 covers the OODT middleware; a java based
reference implementation of the OODT architectural
style, and ties the middleware back to the architectural
style assumptions and properties. Section 4 presents
two deployments of the OODT style and middleware in
the planetary science and cancer research domains,
which both share many of the same data-intensive
system requirements presented above. Section 5 surveys
related work in data-intensive systems. Section 6
addresses open issues within OODT. Section 7 rounds
out the paper.

2. An Architectural Style for Data-
Intensive Systems

One method of defining an architectural style has
been to define the primitive building blocks, software
components and connectors, and then define legal
topologies of these primitive building blocks needed to
construct systems that implement the style itself [4, 16,
19]. Using these core definitions, system
implementations are constructed in the style, and
analyzed to verify that key assumptions of the style at
design-time are validated by the implemented system at
implementation time. We use this method to construct
the basis for the OODT architectural style. To begin,
we define the terms used across the definitions of the
style as follows:

 Data Source – Any entity that can provide data
(e.g. a database, a web site, a data producing
software system and so on)

 Metadata – Describes the content, quality,
conditions, and other characteristics of data
(“data about data”).

 Data Model – A description of the data
provided by a data source, i.e. the metadata for
all data in a data source.

 Data element – Metadata that describes one
facet of the data from a particular data source.
For example, in the case of book data, Title,
would be one possible data element.

 Resource – A data source, a pointer to a unit of
data, or a unit of data which can be queried,
followed or retrieved respectively.

 Data Product – A unit of data or metadata
which can be retrieved from a data source.

2.1 Components

The core components for OODT are Product
Servers, Profile Servers and Query Servers [5]:

• Product Servers abstract away data source

interfaces (such as SQL, File Systems, HTTP)

into source-independent interfaces for retrieval
of data which satisfy the user queries.

• Profile Servers serve back metadata [5] in the
form of resource profile data structures, which
provide data for deciding what resources
satisfy particular queries.

• Query Servers accept user queries, and then
use profile servers to determine what resources
to query and collect in order to satisfy the
query and return data products. The Query
Server then aggregates and returns back the
federated data products to the caller.

2.1.1 Product Servers

Product Servers abstract away data source dependent
interfaces to data by wrapping [6] the data source
interface such that it can support OODT queries. OODT
queries are in the format of one or more un-ordered
(keyword comparison operator value) predicates which
themselves are joined by zero or more logical operators
(i.e. AND, OR, etc). Comparison operators are
operators such as “EQUALS, GREATER THAN and
LIKE”.

OODT queries are posed against a set of Common
Data Elements (which formulate a high-level data model
for the data-intensive system, referred to from here on as
a Data Dictionary), and thus the set of allowable
keywords in each predicate comes from the set of the
common data elements in the system‘s data dictionary.
Each product server contains zero or more Query
Handlers which serve back different types of data
products from each data resource. Our rationale behind
having more than one query handler per product server
is due to the fact that there may be multiple types of data
products that are stored in the same data source. A case
like this could be imagined in a relational database,
which stores both binary images of Mars, and also
metadata containing information about the space
instrument which captured each image. Each query
handler contains an translation function t(q), which
maps the query from the data dictionary domain, to a
query in the domain which the data source understands
(i.e. maps common data elements against Source Data
Elements, data elements in the data source domain).
This function is represented by:
(1) 2

''
1 ,,)(DqqqDqqt ∈⎯→⎯∈=

The main goal is to take the abstract query against
the common data elements, and map that into something
that the underlying data sources that are integrated
understand. An example of this translation would be as
follows. Given an OODT query such as “BookType =
Fiction AND Author = Cricthon” and a relational
database containing book data, the OODT query is
translated into: select books.* where book.type
= ‘fiction’ and book.author = ‘crichton’.

2.1.2 Profile Servers
Profile Servers respond to OODT queries, and return

descriptions of resources which can satisfy the system
query. To achieve this functionality, profile servers store
resource Profiles which describe the data elements and
semantic relationships that each data resource supports.
In this fashion, a profile server can receive an OODT
query, and match each keyword data element and
associated semantic constraints to a particular resource
that a profile describes, and return the matching
profile(s) which satisfy the query. This scenario is
illustrated in Figure 1.

Figure 1. Query q and matching Profile of Resource

The profile structure is based on two internationally
accepted standards, ISO/IEC 11179 [7] to describe the
structure of data elements, and the Dublin Core [8] set
of data elements, which are used to describe any
electronic resource. Our choices for these standards are
explained further in [5] and beyond the scope of this
paper, but we refer to them here in order to motivate the
discussion of the profile structure. The profile structure
contains metadata about the profile itself, such as a
unique ID, a name for the profile, and an author of the
profile. We refer to this profile metadata as Profile
Attributes. The next piece of the metadata that the
profile contains is an implementation and extension of
the Dublin Core elements to describe the resource that
the profile describes. These elements include Creator,
Name and Author. Further, our Dublin Core extensions
include the addition of specific data elements to describe
resources, (1) a Resource Location element to describe a
resource’s location (physical locations such as URLs are
supported, as well as OODT-specific URNs [10] which
we detail later) and (2) A taxonomy to categorize the
type of resource (we refer to this element as Resource
Class). Resource Class can be a product server, another
profile server, or the data product itself. We refer to this
extended Dublin Core metadata as Resource Attributes.
The final piece of metadata that we include in profiles is
domain-specific data elements which describe the
resource in its originating domain. For example, in the
Planetary Data System [11], the data element “Target
Name” is used to describe each data product’s
originating “target” (i.e. planet). These domain-specific

data elements are called Profile Elements. The profile
metadata is summarized in Table 1 below.

Similar to product servers, each profile server

contains zero or more query handlers which accept an
OODT query, and then query for the profiles which the
profile server manages. The profile query handlers are
used to abstract away the underlying data source which
stores the resource profiles and return the profiles much
the same way that product servers return data products.

2.1.3 Query Servers

Query Servers are responsible for “putting it all
together”. Initially a query server is bootstrapped with
an initial set of root profile servers, much like
Berkeley’s DNS [9]. The query server contains a list of
collected data products which is populated using the
following process. Upon receiving an OODT-style
query, the query server proceeds to query each one of
the profile servers it knows of to retrieve the profiles
which match resources which satisfy the query. This
querying of profile servers is performed by Querier
components. Each querier component is given a
location for a profile server, and is able to query the
profile server, and retrieve the list of profiles (if any)
that describe resources that could satisfy the particular
query. Each profile returned contains a resource class
attribute (recall section 2.1.2) which is examined to
determine where to go next in order to retrieve the
requested data products. There are three cases which
occur during this examination:

• The Resource Class points to another

Profile Server: In this case, the querier
creates another instance of a querier
component, seeded with the returned profile
server resource location attribute as its root
profile server.

• The Resource Class points to a Product
Server: In this case, the querier creates a
Product Client component instance, which
it seeds with the resource location attribute
of the returned profile. The product client
component retrieves the data products from
the product server, and then the product
client returns the data products back to the
querier component. The querier component
then adds its data products to the collected

data products list in the query server, and
ends its thread lifespan.

• The Resource Class points to an
individual data product: In this case, the
querier retrieves the individual data product
and adds it to the collect data products list
in the query server and ends its component
lifespan.

Once the Querier components have ended their
respective lifespan, the Query Server is done collecting
data products in its collected list. The collected data
product list is then returned to the original user query.

Figure 2. The OODT Software Components

2.2 Connectors

OODT supports one type of connector, a Messaging
Layer, which allows OODT components to
communicate with each other. The main form of
communication between OODT components is the
Query Object. A query object contains the query q
(recall Section 2.1.1), and the query result, i.e. the
collected list of data products (recall Section 2.1.3). The
query object also contains a set of associated metadata
regarding the query, such as Maximum Accepted
Results, Accepted Mime Types (of data products within
the collected data products list), and Query Description.

2.2.1 Messaging Layer

The OODT Messaging Layer’s responsibility is to
route query objects between query server, product
server, and profile server components, and return the
query object to the correct User (typically the user
which contacted the query server). The messaging layer

essentially provides a message bus which allows many
Query Objects to be transferred between OODT
components in a variety of different messaging
Protocols including Unicast, (query object sent from an
originating OODT component to one other component),
Multicast (query object sent from an originating OODT
component to a group of other OODT components
defined by some common attribute, e.g. a URN [10].)
and Broadcast (query object sent from an originating
OODT component to all other OODT components
known to the originator).

2.3 Configurations

OODT Configurations are constructed from the core
software components described above. First each data
source that OODT will integrate is identified and a
product server component is instantiated for each data
source to be integrated. Once all the product servers are
attached to the data sources, profile server components

are created to serve back profiles which point to the
product servers created in the previous step. Last, one
or more query server components are created, and
seeded with the list of profile servers created in the
previous step, and the query servers can then begin
accepting queries and returning data.

Section 4 presents two deployments (and subsequent
architectural configurations of OODT components) of
the OODT architectural style in two diverse domains,
Planetary Science, and Cancer Research.

3. Architecture-based Middleware

The core OODT middleware has been implemented
in Java, using Sun’s Java Development Kit.
Programmers extend OODT core component classes
such as Profile Servers, Product Servers, and Query
Servers.

For the implementation of the product server
component, programmers are required to write
QueryHandler classes which implement the
jpl.oodt.product.[layer].QueryHandler
interface. Layer represents the type of messaging layer
connector the programmer wants to use. Currently,
CORBA and RMI exist, and we are working on a
SOAP-based messaging layer at the time of writing this
paper. The interface method to a query handler for a
product server is the query method. The query method
takes as input a query object (recall Section 2.2) which
can be represented and serialized into XML. The query
object contains the query q (recall Section 2.1.1), and
the associated query metadata (recall Section 2.2).
After retrieving the requested data products, the product
server query method returns the query object back to the
user, this time including any results which satisfied the
query to the underlying data resource. The query
interface method thus becomes the abstract translation
function t(q) discussed in section 2.1.1. We present
below an XML DTD definition of our query object
structure.

<!ELEMENT query
 (queryAttributes,queryResultModeId,
 queryPropogationType,queryPropogationLevels,
 queryMimeAccept*,queryMaxResults,
 queryResults,queryKWQString,
 queryStatistics?, querySelectSet,
 queryFromSet,queryWhereSet,
 queryResultSet)>
 <!ELEMENT queryAttributes
 (queryId, queryTitle*, queryDesc*, queryType*,
 queryStatusId*, querySecurityType*,
 queryParentId*, queryChildId*,
 queryRevisionNote*,queryDataDictId*)>
 <!ELEMENT queryStatistics (statistic*)>
 <!ELEMENT querySelectSet
 (queryElement*)>
 <!ELEMENT queryFromSet
 (queryElement*)>
 <!ELEMENT queryWhereSet
 (queryElement*)>
 <!ELEMENT queryElement
 (tokenRole*, tokenValue*)>
 <!ELEMENT statistic (url, time)>
 <!ELEMENT queryResultSet
 (resultElement*)>
 <!ELEMENT resultElement
 (resultId*, resultMimeType*,
 profId*, identifier*, resultHeader,
 resultValue*)>

 <!ELEMENT resultHeader (headerElement*)>
 <!ELEMENT headerElement (elemName, elemType?,

elemUnit?)>

The product server itself supports the exact same
query method as its query handler component(s). When
a query comes into the product server (via CORBA or
RMI), the product server creates worker threads which
each are given a particular query handler object
reference, as well as a reference to the xml-based query
object (containing the overall result list). In parallel,
each worker thread invokes its query handler’s query
method, and passes it the reference to the product
server’s xml query object, so that each query handler
upon return will aggregate the list of data products into
the results section of the query object.

The profile server component implementation centers
around the use of XML-based profiles, which profile
data resources (recall Section 2.1.2 and Table 1). An
XML DTD for the profile structure is given below:

<!ELEMENT profiles
(profile*)>
<!ELEMENT profile
(profAttributes,
resAttributes,
profElement*)>
<!ELEMENT profAttributes
(profId, profVersion?, profType,
profStatusId, profSecurityType?, profParentId?,
profChildId*,
profRegAuthority?, profRevisionNote*, profDataDictId?)>
<!ELEMENT resAttributes
(Identifier, Title?, Format*, Description?, Creator*,
Subject*,
Publisher*, Contributor*, Date*, Type*, Source*,
Language*, Relation*, Coverage*, Rights*,
resContext+, resAggregation?, resClass, resLocation*)>
<!ELEMENT profElement
(elemId?, elemName, elemDesc?, elemType?, elemUnit?,
elemEnumFlag, (elemValue* | (elemMinValue, elemMaxValue)),
elemSynonym*,
elemObligation?, elemMaxOccurrence?, elemComment?)>

The profile server component is implemented by

writing profile server query handlers, which return back
resource profiles in the above XML format. The profile
server itself provides two interface methods, (1) A query
method which accepts an xml based query object and
returns resources profiles which can satisfy queries
against the data dictionary data elements used in query
object’s query string and (2) A getProfile method which
accepts a profile Id, and returns the exact profile which
matches the given id. The profile server query method
returns profiles by querying (in parallel using the worker
thread method discussed for the product server
implementation) its respective profile query handlers.
Each profile query handler implements the same 2
methods as its parent profile server, which allows each
query handler to return profiles asynchronously back to
the parent.

Upon creating query handlers that return both data
products, and profiles, the method for linking the Query
Handlers to the product and profile servers respectively
can be performed via XML configuration files, or at
system-runtime. The XML configuration file essentially
sets each product and profile server specified to have the
associated query handlers, and instantiates each

respective component. After instantiation, the system
determines what type of messaging connector is used
(either RMI or CORBA), and then registers the profile
and product server components with the appropriate
registry (in RMI, Sun’s RMI Registry can be used, in
CORBA, the CORBA Name Service is used). Query
server components can then be instantiated and given
the list of profile servers which exist in the system.
Each profile, product, and query Server component is
identified in the form of URNs [10], which uniquely
identify the distributed component in the respective
registry type. Our URN’s are in the form of
urn:oodt:[layer]:[component-name]. The
respective layer registry enforces the requirement that
the combination of [layer]: [component-name] must be
unique when components register at run-time.

The implementation of the query server component
typically comes last, which is directly tied to its
architectural style notion of “bringing it all together”.
The query server component is seeded (either at run-
time via configuration files or compile time via code)
with a set of root profile server components (identified
by URNs described in the above paragraph). The query
server component supports one interface method, a
query method. The query method accepts a query object
as a parameter, and returns back the same query object
this time containing the federated results that it was able
to collect from the OODT connected system. To
perform this result collection, the query component
instantiates a base set of querier threads (recall Section
2.1.3) which are each given a root profile server in the
query server component’s initial list. Each querier
thread proceeds in parallel to query its respective profile
server and retrieve resource profiles by which to
discover locations of resources which satisfy the original
query. The querier threads use the algorithm described
in Section 2.1.3 to examine each resource profile’s
resource class attribute to determine how to go about
reaching an eventual data product. Once all the original
(and any additional Querier threads which were created)
are finished collecting products, the method returns the
query object with all the collected results.

4. Experience and Evaluation

In this section, we discuss a deployment of the
OODT middleware in the Planetary Science domain,
with NASA’s Planetary Data System [11]. We follow
by presenting another OODT deployment supporting
Cancer Research with NCI’s Early Detection Research
Network (EDRN) [12].

4.1 Planetary Data System

The Planetary Data System (PDS) manages and
archives planetary science data for NASA’s Office of
Space Science. It has been in existence since the late
1980’s and to this point has collected approximately six

terabytes of data, which pre-OODT was distributed and
archived for scientists on CD and DVD media. The
PDS is divided up into eight discipline “nodes”, which
are geographically distributed across the country (shown
in Figure 3). Each node is responsible for managing and
distributing its own particular planetary science data
which is cumbersome due to their geographically
diverse locations, and different methodologies
(discussed below) for storing and accessing their data.

Figure 3. PDS Geographic Diversity

The OODT middleware was used in 2002 to deploy
an infrastructure for the distribution of PDS data from
all eight nodes via the internet. OODT product server
components wrapped data resources at each PDS node
(a total of 8 active Product Servers) and a master set of 5
Profile Servers were used to profile the data resources
exposed by the OODT product Server components. To
tie everything together, a web search page was
constructed to allow a user to pose a federated query
across the entire PDS, and receive back the federated
PDS data. The web portal search page poses its queries
to an OODT query server, seeded with the master set of
profile servers mentioned above.

Figure 4. PDS deployment using the OODT style
and middleware

To begin, we evaluate the PDS deployment against
the 4 initial data-intensive issues (recall Section 1)
and present our evaluation in Table 2 below. +
indicates full support for the data-intensive issue, -
indicates anything less than full support.

Further, we evaluate the PDS deployment against the

following additional dimensions in order to highlight
both the heterogeneity of the distributed system, along
with its data-intensive nature:

1. Operating System that each PDS node is running
2. Underlying data source that each product server

integrates
3. Amount of data served back by each PDS node

(including both resource profile queries, and
product queries)

4. Number of data products transferred at each
PDS product server

Our results are summarized in Table 3.

 Since 11/15/2002, the PDS Product Server

components have transferred 25GB of PDS Data
Products to Scientists across the country (note that the
25GB so far are not including the full distributions of
Mars Global Surveyor, Mars Odyssey, and upcoming
MRO missions because all of the data has not been
delivered to the PDS yet)

Table 4 helps to illustrate the benefit of OODT in the
PDS. Before OODT, PDS data was distributed via CD
and DVD media, and the PDS nodes had to mail out
CDs and DVDs to scientists which contained the
planetary science data from the missions which they

desired to study. In part, this is due to the heterogeneity
of the data stored at each PDS node, and each node’s
neglect to focus on data system interoperability software
architecture. Since OODT, the data can now be
distributed, and accessed via the web, as if the data
stored in a single virtual data source. PDS nodes can
also download the OODT middleware implementation
framework and create their own OODT components
which will plug into the existing middleware
infrastructure, which will help to discourage
construction of “one-off” data systems which have to be
integrated at a later time. In Table 4, we show 3
NASA/JPL missions, Mars Global Surveyor (MGS),
Mars Odyssey (Odyssey), and Mars Reconnaissance
Orbiter (MRO) and the amount of science data (in
terabytes) that each mission was set to produce. The last
column, Cost, shows the estimated cost for distributing
those PDS products on DVD media, and mailing out the
PDS data to the scientists, using the old data delivery
method that NASA was forced to use because of the
PDS heterogeneity. The upcoming MRO mission is set
to produce a un-precedented 224 terabytes of data which
pre-OODT would have cost NASA an estimated 186
million dollars to distribute to the planetary scientists
who need the data to perform their research.

4.2 Early Detection Research Network

The National Cancer Institute’s Early Detection
Research Network [12] is a network of over 30 cancer
research sites participating in research geared towards
the early detection of cancer. Particularly of interest to
EDRN is cancer biomarker data [12]. Similar to the
PDS, each EDRN site is geographically distributed
across the United States, and each site contains data
systems which do not interoperate and commingle with
the other EDRN sites’ data systems. The ability to
correlate this information is critical to cancer research in
that it has been shown that as study volumes increase, so
does the rate of scientific discovery [12]. Also, in terms
of validating and testing biomedical data, it is important
to compare and contrast similar data at different EDRN
sites.

 The OODT middleware is currently supporting
EDRN by providing the middleware infrastructure to
integrate the distributed cancer research data located
across EDRN’s sites. Product servers at 9 of the current
EDRN locations wrap site specific data sources, and
expose the cancer data to the overall system. A Profile
server, located at Fred Hutchinson Cancer Research
Center in Seattle provides the means for discovery of the
existing product servers in the network. A portal web

page, the ERNE (EDRN Resource Network Exchange)
[12] provides web-based access to the OODT-based
query system.

Figure 5. EDRN Geographic Diversity

Below, we present the EDRN deployment which

was built using the OODT style software
architecture. OODT currently is deployed at 9 of the
existing EDRN sites, 8 of which are shown in the
diagram below.

Figure 6. EDRN deployment using OODT style
and middleware.

We begin by evaluating the EDRN deployment
against the initial data-intensive issues (recall Section
1) and present our evaluation in Table 5 below.

Each EDRN site besides the DMCC (Data

Management Coordinating Center) at Fred
Hutchinson Cancer Research Center in Seattle

employs a product server for Data Access (the
DMCC hosts the system’s profile server) and
therefore each EDRN site provides some level of
Data Model Integration (via each product server’s
t(q) function). Since each product and profile server
employs a standard software interface, each site
provides a level of software interface integration.
Finally, Data Discovery is facilitated by the DMCC
site because it contains the profile server which
contains the initial list of product servers which are
available to satisfy resources.

To conclude our evaluation, we further evaluate
our EDRN deployment against the dimensions used
in Table 3 to evaluate system heterogeneity and data-
intensive nature. The results of our evaluation are
shown in Table 6.

Our evaluation is shown for 6 of the EDRN sites of

which we had recorded data for. The EDRN data above
has been recorded since 1/14/03. N/A indicates that
data was not available for a particular site.

5. Related Work

The work-in-progress by Kolp and Mylopoulos [13]
models information systems using business-
organizational structure as an architectural style, and
argues that Multi-agent Systems (MAS) should be
considered as a construct for information system
architectural styles. They primarily focus on the domain
of business information systems. They are also
restricting their study to requirements engineering and
conceptual architecture for such systems. On the other
hand, our goal is to provide end-to-end software
development solutions, spanning the entire software
engineering lifecycle for data-intensive systems.

Gomaa et al. [14,15] present a novel architecture for
describing large-scale data-intensive information
systems, specifically applied to NASA’s EOSDIS
science domain. This work is closely related to ours,
but focuses only on a single style – federated client-
server [16]. Furthermore, they present no fine-grained
mapping of the conceptual architecture to the

deployment architecture, or middleware-based solutions
for implementing the data-intensive system. The
EOSDIS system also suffered from many design flaws,
which are discussed in [17].

Moore et al. [18] define Data-intensive systems as
systems which are IO-bound. They specifically describe
the SDSC1 Storage Request Broker (SRB) and how it
can be used to abstract domain-specific data sources
using a layered architectural style [19]. Moore et al.
also presents a table2 defining a basic set of application
requirements for data-handling environments. In
contrast, our approach aims to perform such work
throughout the software engineering lifecycle for data-
intensive systems. Furthermore, as discussed below in
the context of grids, layered service architectures
provide no insight into the effective topologies of a
system’s constituent software components and
connectors. Layered service architectures also typically
provide little guidance about the legal behaviors of
components, as laid out in deployment architectures.

Recent work in the Grid Community [1] has
characterized a class of distributed data interoperable
systems as Data Grids [20]. Data Grids are discussed
architecturally in terms of a layered services architecture
[19], and web-serviced based [21] middleware
implementation. This approach is similar to ours in the
sense that the architecture is developed first, and then
middleware is instantiated to implement the architectural
constructs. However, there has been no focus on
mapping system requirements to architectural
components and, furthermore, to implementation-level
artifacts in the data grid community. In fact, it has been
recognized that initial efforts on data grids (and the grid
community as a whole) have focused on “getting it to
work” rather than system scalability, evolution, or
design [22].

Singh et al. [23] define a metadata catalog service
(MCS) component, but do not describe its relationship
in full to the layered services architecture adopted by the
grid community (e.g., the Globus toolkit [1]) nor to its
deployment and interactions with other grid
components. Singh et al. focus on the MCS
component’s scalability, which is indicative of the grid
community’s tendency to focus on super-computing
challenges, as opposed to effective software engineering
methodologies. Our work is geared towards uniting
formal software engineering principles with the design
of data-intensive information integration systems such
as data grids.

Sun’s Enterprise Java Beans (EJB) [24] are
extensible software components which are tightly
coupled to an underlying middleware infrastructure
providing network services, secure transactions and

1 San Diego Supercomputing Center
(http://www.sdsc.edu)
2 Table 5.2 in [18]

component discovery. EJB are popular in industry as
implementation-level constructs supporting the
development of distributed systems. EJB provide no
native support; however, for data-intensive issues such
as data access, data discovery and data model
correlation that our work supports. Indeed, our work
has focused on using middleware implementation
infrastructures such as EJB to support basic component
services, and then providing middleware-specific
implementations of Product Servers, Profile Servers, and
Query Servers to support data-intensive functionality.
EJB could be envisaged as an implementation-specific
OODT messaging layer connector.
6. Open Issues

There remain several open issues with OODT that
we will address briefly in this section. First and
foremost, architecting, and deploying OODT software
architectures, and subsequent middleware is very
programmer-intensive. By “programmer-intensive” we
mean that a programmer is required to be “in the loop”
in order to successfully deploy and architect these
systems. This is due to the fact that the programmer is
responsible for translating OODT architectural
constructs into extensions of our existing middleware
framework (recall Section 3). Typically, a programmer
will be involved in the early phases of the software
process, helping to gather requirements, and translate
requirements into some tailoring, configuration and
deployment of existing OODT code.

One way of addressing problems like these has
typically been to provide architectural design tools, such
as UC Irvine’s xADL [25] for software designers to
create architectural diagrams, and then have a way of
mapping those architectural diagrams to software
implementation and code deployment. There is existing
work in this area [26], and we aim to research and
construct tool support to model and deploy architectures
and software systems in the OODT-style.

The OODT middleware also assumes a reliable
network is present in order for the Product, Profile, and
Query Servers to communicate across. We currently
have no support for issues such as disconnected
operation [27], and off-loading of data to support
unreliable hosts. This type of fault-tolerance is crucial
in data-intensive systems which may be deployed in
unreliable environments.

7. Conclusions

We have presented OODT, an architectural style and
middleware implementation for data-intensive systems.
We feel that data-intensive systems have been a
neglected area of research in the software engineering
and software architecture communities, and we desire to
apply formal software architectural methodologies to the
design, implementation, and evolution of data-intensive
systems. The OODT style and middleware was

developed at NASA’s Jet Propulsion Laboratory and has
been supporting NASA’s Planetary Data System in the
Planetary Science Domain. The OODT middleware also
supports Cancer Research, and is currently deployed at
the National Institute of Health’s National Cancer
Institute, supporting the EDRN (Early Detection
Resource Network) task.

8. Acknowledgments

The work described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

9. References

[1] The Globus Alliance. http://www.globus.org. January,
2004
[2] E. M. Dashofy, N. Medvidovic, and R. N. Taylor.
Using Off-The-Shelf Middleware to Implement Connectors
in Distributed Software Architectures. In Proceedings of
the 21st International Conference on Software Engineering
(ICSE'99), Los Angeles, CA.
[3] C. A. Knoblock et al. Accurately and reliably
extracting data from the web: A machine learning
approach, IEEE Data Engineering Bulletin, 23 (4):33-41,
December 2000.
[4] R. N. Taylor, N. Medvidovic et al. A Component- and
Message-Based Architectural Style for GUI Software.
IEEE Transactions on Software Engineering, vol. 22, no. 6,
pages 390-406 (June 1996).
[5] D Crichton, J.S. Hughes and S. Kelly. A Science Data
System Architecture for Information Retrieval. In
Clustering and Information Retrieval. Kluwer Academic
Publishers. December 2003.
[6] H.M. Sneed. The Rationale for Software Wrapping. In
Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), October 01-03, 1997, p.
303.
[7] ISO/IEC, Framework for the Specification and
Standardization of Data Elements 11179-1, Specification
and Standardization of Data Elements 11179, International
Organization for Standardization, Geneva, 1999.
[8] DCMI, Dublin Core Metadata Element Set, Version
1.1: Reference Description, Dublin Core Metadata
Initiative, 1999.
[9] Berkeley Internet Name Domain (BIND).
http://www.isc.org/bind.html, 2004.
[10] RFC 3613. Definition of a Uniform Resource Name
(URN) namespace, 2003.
[11] J. S. Hughes and S. K. McMahon. The Planetary Data
System. A Case Study in the Development and
Management of Meta-Data for a Scientific Digital Library.
In Proceedings of the European Conference on Digital
Libraries (ECDL), 1998. pp. 335-350
[12] H. Kincaid, D. Crichton et al. A National Virtual
Specimen Database for Early Cancer Detection. In
Proceedings of the 16th IEEE Symposium on Computer

Based Medical Systems (CBMS). New York, New York,
June 2003, p. 117.
[13] M. Kolp and J. Mylopoulos. Architectural Styles for
Information Systems: An Organizational Perspective,
Tropos Working Paper. University of Toronto, Department
of Computer Science, January 2001.
[14] H. Gomaa, D. Menasce, and L. Kerschberg, A
Software Architectural Design Method for Large-Scale
Distributed Information Systems, Journal of Distributed
Systems Engineering, 1996.
[15] L. Kerschberg et al. Data and Information
Architectures for Large-scale Data Intensive Information
Systems. In Proceedings of the 8th International
Conference on Statistical and Scientific Database
Management, Stockholm, Sweden, June 18-20, 1996
[16] R. T. Fielding. Architectural Styles and the design of
Network-based Software Architectures, Ph.D. Dissertation,
University of California, Irvine, 2000.
[17] A. T. Leath. NASA’s Earth Science Programs come
under Scrutiny. The American Institute of Physics Bulletin
of Science Policy News Number 126: September 11, 1998.
http://www.aip.org/enews/fyi/1998/fyi98.126.htm
[18] R. W. Moore et al. Data-Intensive Computing. In The
Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufman Publishers, 1999.
[19] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.
[20] A. Chervenak, I. Foster et al. The Data Grid:
Towards an Architecture for the Distributed Management
and Analysis of Large Scientific Datasets. Journal of
Network and Computer Applications, 2000.
[21] Webservices.org. http://www.webservices.org,
January, 2004.
[22] H. Casanova, Distributed Computing Research Issues
in Grid Computing, ACM SIGAct News, Vol. 33, No. 3,
2002, pp. 50-70.
[23] G. Singh, S. Bharathi et al. A Metadata Catalog
Service for Data Intensive Applications, In Proceedings of
the IEEE Conference on Supercomputing, 2003.
[24] N. Medvidovic and N. R. Mehta. JavaBeans and
Software Architecture. In The Internet Encyclopedia,
Hossein Bidgoli (ed.), John Wiley & Sons, December
2003.
[25] E.M. Dashofy, A. Van der Hoek and R.N. Taylor. An
Infrastructure for the Rapid Development of XML-based
Architecture Description Languages. In Proceedings of the
24th International Conference on Software Engineering
(ICSE’02), p.266-267, 2002.
[26] N. Medvidovic et al. Software Architectural Support
for Handheld Computing. Cover feature in IEEE
Computer, September 2003.
[27] M. Mikic-Rakic and N. Medvidovic. Toward a
Framework for Classifying Disconnected Operation
Techniques. In Proceedings of the 2nd International
Workshop on Software Architectures for Dependable
Systems (WADS’03), Portland, Oregon, May 2003.

